evaxion-biotech.com

R&D Day March 19, 2024

Al-Immunology[™] - a New Era in Vaccine Development

Al-Immunology™ Powered Vaccines

EVAX:NASDAQ

Agenda SESSION 1 - Introduction

CET	/	ESI	1	
14.00 - 14.10	/ 9	.00 -	9.10	Welcome
14.10 - 14.20	/ 9	.10 -	9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9	.20 -	9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9	.35 -	9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9	.55 -	10.15	BREAK
SESSION 2 - Ir	nfect	tious I	Disease Va	iccines
15.15 - 15.35	/ 10	0.15 -	10.35	EDEN [™] - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10	0.35 -	10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10	0.55 -	11.15	BREAK
SESSION 3 - Pe	erso	nalize	d Cancer \	/accines
16.15 - 16.35	/ 1	1.15 -	11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 1	1.35 -	11.55	ObsERV [™] - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 1	1.55 -	12.15	BREAK
SESSION 4 - Pr	recis	sion C	ancer Con	cepts
17.15 - 17.35	/ 12	2.15 -	12.35	AI-DEEP TM - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12	2.35 -	12.55	Addressing difficult to treat cancers with AI-Immunology TM
17.55 - 18.00	/ 12	2.55 -	13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13	3.00 -	14.00	Reception with drinks and snacks

Forward-Looking Statement

This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. The words "target," "believe," "expect," "hope," "aim," "intend," "may," "might," "anticipate," "contemplate," "continue," "estimate," "plan," "potential," "predict," "project," "will," "can have," "likely," "should," "would," "could," and other words and terms of similar meaning identify forward-looking statements. Actual results may differ materially from those indicated by such forward-looking statements as a result of various factors, including, but not limited to, risks related to: our financial condition and need for additional capital; our development work; cost and success of our product development activities and preclinical and clinical trials; commercializing any approved pharmaceutical product developed using our Al platform technology, including the rate and degree of market acceptance of our product candidates; our dependence on third parties including for conduct of clinical testing and product manufacture; our inability to enter into partnerships; government regulation; protection of our intellectual property rights; employee matters and managing growth; our ADSs and ordinary shares, the impact of international economic, political, legal, compliance, social and business factors, including inflation, and the effects on our business poerations and financial condition. For a further discussion of these risks, please refer to the risk factors included in our most recent Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at <u>www.sec.gov</u>. We do not assume any obligation to update any forward-looking statements except as required by law.

This presentation includes statistical and other industry and market data that we obtained from industry publications and research, surveys and studies conducted by third parties or us. Industry publications and third-party research, surveys and studies generally indicate that their information has been obtained from sources believed to be reliable, although they do not guarantee the accuracy or completeness of such information. All of the market data used in this presentation involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. While we believe these industry publications and third-party research, surveys and studies are reliable, we have not independently verified such data. The industry in which we operate is subject to a high degree of uncertainty, change and risk due to a variety of factors, which could cause results to differ materially from those expressed in the estimates made by the independent parties and by us.

evaxion-biotech.com

SESSION 1 - Introduction

Al-Immunology™ Powered Vaccine

Evaxion overview Setting the scene

Who We Are

Evaxion is a pioneering TechBio company with a validated and leading **AI-platform** (**AI-Immunology™**) for fast and effective vaccine target discovery, design and development

Al-Immunology™ allows for groundbreaking **development of novel personalized and precision vaccines** for cancer and infectious diseases

Why Are We Here: **Saving and Improving** Lives with Al-Immunology™

Strategy: Three-Pronged Business Model Based upon Al-Immunology™

💬 Multi-partner approach to value realization –

TARGETS

Multi-partner approach focused around single or multiple vaccine target discovery, design and development agreements

₽

PIPELINE

Own development programs for select high value programs; bringing programs to major value inflection point

RESPONDERS

Harnessing our data and predictive capabilities to develop responder models

ă-lmmunology™

We Have Built a Strong Multidisciplinary Capability Set and State of the Art Facilities

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Al-Immunology™ - Clinically Validated Predictive Capabilities

Progression-Free Survival Based on PIONEER™ Score

Kaplan-Meier plots displaying Progression-Free Survival (PSF) of patients based on median PIONEER™ quality score. Patients were stratified by PIONEER™ quality score into two groups corresponding to the six highest and six lowest median scores.

- Al response prediction (PIONEER[™] score) builds on the presence of high-quality tumour neoantigens
- Patients with high PIONEER™ scores had longer progression-free survival
- A similar relationship could not be established using the conventional TMB method

Our Al-Immunology™ Platform and Multidisciplinary Capability Set **Drive Differentiation**

- Our multidisciplinary capability set allows for:
 - Continuous iterative learning loops
 - Ongoing expansion of data sets with proprietary data
 - Rapid validation of AI predictions
 - Full control of process from idea to validation
 - Continued expansion of pipeline assets
- Significantly enhancing the value of our platform

Pipeline: Demonstrating the **Performance and Scalability of Our AI-Immunology™** Platform

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Recent Highlights Confirm Strong Strategy Execution

Several Important Near-Term Milestones

	Milestones	Target
EVX-B1	Conclusion of final MTA study with potential partner	Q1 2024
Al-Immunology™	Launch of EDEN™ model version 5.0	Mid 2024
EVX-B2-mRNA	EVX-B2-mRNA preclinical Proof-of-Concept obtained	Q3 2024
EVX-01	Phase 2 one-year readout	Q3 2024
EVX-B3	Conclusion of target discovery and validation work in collaboration with MSD (tradename of Merck & Co., Inc., Rahway, NJ, USA)	H2 2024
Precision ERV cancer vaccines	Preclinical Proof-of-Concept obtained	H2 2024
Funding	Ambition for full year 2024 is to generate business development income equal to 2024 cash burn (excluding financing activities) of 14 million USD*	

Agenda SESSION 1 - Introduction

CET		EST	
14.00 - 14.10	/ 9.0	0 - 9.10	Welcome
14.10 - 14.20	/ 9.1	0 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9.2	0 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9.3	5 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9.5	5 - 10.15	BREAK
SESSION 2 - Ir	nfectio	ous Disease Vo	accines
15.15 - 15.35	/ 10.	15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10.	35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10.	55 - 11.15	BREAK
SESSION 3 - Pe	ersond	alized Cancer	Vaccines
16.15 - 16.35	/ 11.	15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 11.	35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 11.	55 - 12.15	BREAK
SESSION 4 - PI	recisic	on Cancer Con	icepts
17.15 - 17.35	/ 12.	15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12.	35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00	/ 12.	55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13.	00 - 14.00	Reception with drinks and snacks

Al-Immunology™ – A leading Al platform

AI-Immunology™ – A Unique Differentiator

Al-Immunology™ - Clinically Validated Predictive Capabilities

Progression-Free Survival Based on PIONEER™ Score

Kaplan-Meier plots displaying Progression-Free Survival (PSF) of patients based on median PIONEER™ quality score. Patients were stratified by PIONEER™ quality score into two groups corresponding to the six highest and six lowest median scores.

- Al response prediction (PIONEER[™] score) builds on the presence of high-quality tumour neoantigens
- Patients with high PIONEER™ scores had longer progression-free survival
- A similar relationship could not be established using the conventional TMB method

Why The Need for AI-Immunology™

- 10 million deaths a year due to cancer*
- 7.8 million deaths a year due to infectious diseases**
- We use the Al-Immunology[™] platform to discover and assess the protectiveness of vaccine antigens and design candidates within hours, expediting the vaccine development process

A Vaccine **'Teaches'** the Body to Fight an Infectious Agent or Disease

- A vaccine is a drug that is introduced into the body to trigger an immune response to prevent infection or to control a disease like cancer
- A vaccine contain parts of the infectious agent or cancer that can trigger a successful immune response – these are known as 'antigens'

* Source: WHO, ** Source: IHME, *** Source: Precedence Research

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Key Areas for Building a Successful Vaccine

The Key Areas of AI-Immunology™

Al-Immunology™ is an **Ensemble of Smaller Building Blocks** Utilized Across the Al-Immunology™ Models

SNVs	EvaxMHC	Precision design
Frameshifts	HLA typing	BIFROST
HLA loss	Epitope hotspots	Personalized design

1 DISEASE DECODING

Our disease decoding building blocks scan the disease of interest and pinpoint the weak spots for recognition by the immune system

VIRUS BACTERIA CANCER

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

1 DISEASE DECODING

2 IMMUNE RESPONSE DECODING

Our immune response decoding building blocks rank the weak spots from the disease - from best to worst - by their ability to induce an immune response toward the disease

B CELLS T CELLS ANTIGEN PRESENTING CELLS

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

3 VACCINE DESIGN

Our vaccine design building blocks are designed to select optimal sets of antigens for a given patient/population and ensure that the antigens included in the vaccine can be manufactured and delivered optimally

SAFETY SEQUENCE OPTIMIZATION ANTIGEN DESIGN

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precision design	Personalized design	BIFROST	

How We Built **ObsERV™**

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precision design	Personalized design	BIFROST	

How We Built **ObsERV™**

ERV antigens

2 IMMUNE RESPONSE DECODING

EvaxMHC	HLA typing	HLA frequencies	Distance to self
Protective antigens	Epitope hotspots		

3 VACCINE DESIGN

1 DISEASE DECODING

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precison design	Personalized design	BIFROST	

ObsERV™

1st layer is decoding the disease

HLA loss

2nd layer is decoding the immune response

EvaxMHC	HLA typing

3rd layer is designing the best vaccine

, , ,		
Antigen quality	Antigen safety	Personalized design

Expression

Al-Immunology™ **Models**

PIONEER™

SNVs	Frameshifts	Gene fusions	HLA loss
Expression	Clonality	Neoantigens	
EvaxMHC	HLA typing	Distance to self	
Antigen quality	Antigen safety	Personalized design	

RAVEN™

Expression	Viral antigens	Antigen conservation
EvaxMHC	HLA frequencies	Epitope hotspots
Precision design	BIFROST	

AI-DEEP™

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Expression	Clonality
Treatment effect			
EvaxMHC	HLA typing	Distance to self	

ObsERV™

HLA loss	ERV antigens	Expression
EvaxMHC	HLA typing	
Antigen quality	Antigen safety	Personalized design

EDEN™

Bacterial antigens	Viral antigens	Antigen conservation
EvaxMHC	Protective antigens	
B-cell antigen modelling	B-cell antigen design	

Pipeline: Demonstrating the **Performance & Scalability of Our AI-Immunology™** Platform

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Building Future Models

EvaxNext™

?	?	?
?	?	
?		
?	?	?
?	?	

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

EvaxMHC	HLA typing	HLA frequencies	Distance to self
Protective antigens	Epitope hotspots		

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precison design	Personalized design	BIFROST	

Building Block Architecture Enables Scaling to Other Therapeutic Areas

Summary

- Evaxion is first mover in using AI for vaccine target discovery, design & development and clearly differentiated
- Al-Immunology™ platform is trained in cancer and infectious diseases
- Al-Immunology[™] has been clinically validated
- Al-Immunology[™] is an ensemble of smaller building blocks utilized across the Al-Immunology[™] models
- The AI-Immunology[™] building block architecture enables scaling to therapeutic areas beyond cancer and infectious diseases

EvaxMHC our Central Building Block

PIONEER™

Antigen quality	Antigen safety	Personalized design	
EvaxMHC	HLA typing	Distance to self	
Expression	Clonality	Neoantigens	
SNVs	Frameshifts	Gene fusions	

RAVEN™

Expression	Viral antigens	Antigen conservation
EvaxMHC	HLA frequencies	Epitope hotspots
Precison design	BIFROST	

AI-DEEP™

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Expression	Clonality
Treatment effect			
EvaxMHC	HLA typing	Distance to self	

ObsERV™

HLA loss	ERV antigens	Expression
EvaxMHC	HLA typing	
Antigen quality	Antigen safety	Personalized design

EDEN™

Bacterial antigens	Viral antigens	Antigen conservation
EvaxMHC	Protective antigens	
B-cell antigen modelling	B-cell antigen design	

Agenda SESSION 1 - Introduction

CET		EST	
14.00 - 14.10	/ 9.0	00 - 9.10	Welcome
14.10 - 14.20	/ 9.1	0 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9.2	20 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9.3	5 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9.5	5 - 10.15	BREAK
SESSION 2 - In	nfectio	ous Disease Va	iccines
15.15 - 15.35	/ 10.	15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10.	35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10.	55 - 11.15	BREAK
SESSION 3 - Pe	erson	alized Cancer \	/accines
16.15 - 16.35	/ 11.	15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 11.	35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 11.	55 - 12.15	BREAK
SESSION 4 - Pr	recisio	on Cancer Con	cepts
17.15 - 17.35	/ 12.	15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12.	35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00	/ 12.	55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13.	00 - 14.00	Reception with drinks and snacks

EvaxMHC 4.0 - A cutting-edge AI building block

EvaxMHC is a **Central Building Block** Across All Al-Immunology™ Models

The Adaptive Immune System Revolves Around the MHC•Peptide•TCR Interaction

MHC Genes are the Most Diverse Genes Across All Individuals

MHC: Major Histocompatibility Complex HLA: Human Leukocyte Antigen

Human Class I MHCs: **HLA-A**, **B**, and **C** Class II: **HLA-DR**, **DQ**, and **DP**

Currently **26,610 HLA class I alleles** and **11,398 HLA class II alleles** are known.

MHC•Peptide Predictors Classify Presentation for **Millions of Peptides** on **Thousands of MHC Alleles**

44

EvaxMHC Empowers **ObsERV™** to Design **Efficacious** ERV-Based Cancer **Vaccines**

Evaxion has Generated **Proprietary Datasets** for MHC Alleles that are **Underrepresented in Public Datasets**

EvaxMHC4 Improvements are Driven by **Proprietary Datasets**, Novel **Architectures** and **Training Strategy**

- Integrating deep neural networks with Peptide-MHC data have proven a significant challenge
- 2. EvaxMHC uses an AI model architecture inspired by machine translation
- 3. EvaxMHC has been trained as a generative adversarial network

Conventionally, Peptide•MHC Predictions are Driven by **Deep Knowledge** and **Feature Engineering**

Deep Learning Techniques are Used to Leverage Increasing Amounts of Data

Deep Learning Techniques are Used to Leverage Increased Amounts of Data

Encoder-Decoder

For Peptide•MHC modelling

- Logical fit to model Peptide•MHC interaction
- MHC Sequence as the "Input language"
- Peptide + Encoded MHC is decoded to a binding yes/no answer

Deep Learning Techniques are Used to Leverage Increased Amounts of Data

Encoder-Decoder + Generative Adversarial Network

For Peptide•MHC modelling

Deep Learning Techniques are Used to Learn Connections Between MHC Class I and Class II Binding

Transformer Architecture allow a combination of MHC class I and class II data

EvaxMHC is a **State-of-the-Art Peptide•MHC Interaction** Predictor

EvaxMHC is a **State-of-the-Art Peptide•MHC Interaction** Predictor

State-of-the-Art Peptide•MHC Predictions Impacts Across Our AI-Immunology™ Models

Summary

- Peptide•MHC interactions communicate self/non-self across cell boundaries
- Peptide•MHC predictions are crucial for modern design of vaccines
- EvaxMHC 4.0 is a major leap forward in Peptide•MHC prediction performance
- Advances in Peptide•MHC prediction
 precision improves vaccine performance

Q&A SESSION

BREAK – Be Back at 15.15 CET / 10.15 EST

Agenda SESSION 1 - Introduction

CET	/ EST	
14.00 - 14.10	/ 9.00 - 9.10	Welcome
14.10 - 14.20	/ 9.10 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9.20 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9.35 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9.55 - 10.15	BREAK
SESSION 2 - Ir	nfectious Disease Vo	accines
15.15 - 15.35	/ 10.15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10.35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10.55 - 11.15	BREAK
SESSION 3 - Pe	ersonalized Cancer	Vaccines
16.15 - 16.35	/ 11.15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 11.35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 11.55 - 12.15	BREAK
SESSION 4 - PI	recision Cancer Cor	ncepts
17.15 - 17.35	/ 12.15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12.35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00	/ 12.55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13.00 - 14.00	Reception with drinks and snacks

evaxion-biotech.com

SESSION 2 - Infectious Disease Vaccines

Al-Immunology™ Powered Vaccines

EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens

Global Deaths from Antimicrobial Resistant (AMR) Infections Sets to Skyrocket

- 2020 10 million deaths a year due to cancer*
- 2020 1,3 million death of AMR infections**
- 2050 10 million death of AMR infections**

We Need **AI for Accelerated Vaccines Development** against AMR Infections

- Vaccines have a proven track-record of tackling AMR infections
- Traditional vaccine development 'Reverse Vaccinology' is both costly and timeconsuming, relying on luck to find protective antigen targets
- We use our EDEN™ AI model to rapidly and precisely discover these highly and broadly protective vaccine antigens which are needed for AMR vaccine development

How We Built EDEN™

EDEN™

Bacterial antigens	Viral antigens	Antigen conservation
EvaxMHC	Protective antigens	
B-cell antigen modelling	B-cell antigen design	

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect

2 IMMUNE RESPONSE DECODING

EvaxMHC		
Protective antigens	Epitope hotspots	

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precision design	Personalized design	BIFROST	

EDEN™ Identifies **Novel Protective Antigen** Targets by Feature Recognition

EDEN™ Predict Antigen Protectiveness and Ranks Proteome

Proteome

Ranked by predicted protectiveness

Protein ID	AA Sequence		EDEN rank	EDEN score	Protein ID
prot_0001	MNRKKTVIIS		# 1	0.9912	prot_0124
prot_0002	MKVKNKILTM		# 2	0.9825	prot_0057
prot_0003	MFDAKDIKKD		# 3	0.9804	prot_0325
prot_0004	MKKRILSAVL		# 4	0.9783	prot_0012
prot_0005	MKMNKKVLLT	LDLIN	— # 5	0.9266	prot_1524
prot_0006	MSKKRLHEIA	RECOGNIZES	# 6	0.8888	prot_0524
prot_0007	MTKKHLKTLA	SHARED	# 7	0.8546	prot_0658
prot_0008	MSKQKVMATL	FEATURES	# 8	0.8485	prot_0998
prot_0009	MSKRQNLGIS		# 9	0.8389	prot_1654
prot_0010	MSEDQKHPFF		# 10	0.808	prot_0004
•••			•••		
prot 2617	MNKRRKLSKL		# 2617	0.00002	prot 0054

EDEN™ AI-Score Correlates with Protection Identifying Most Protective Antigens

EDEN™ Outperforms Reverse Vaccinology

Source: Bensi G, et al. Mol Cell Proteomics. 2012 Jun; DOI: 10.1074. PMID: 2228675 Source: Fritzer A. et al. Infection and Immunity. 2010;78(9); DOI: 10.1128. PMID: 20624906

Gonorrhea Skyrockets Today

- Gonorrhea is a sexually transmitted disease caused by infection with the *Neisseria* gonorrhoeae bacterium
- *N. gonorrhoeae* infections are often **without symptoms and untreated**
- CDC classifies gonorrhea as an **urgent threat due to increasing antibiotic resistance**
- Untreated gonorrhea can cause
 - Lethal sepsis
 - Blindness of newborns
 - Infertility
 - Pregnancy complications
 - Permanent damage to nervous system
 - Permanent damage to cardiovascular system
 - Chronic pain

EVX-B2: Two Superior Top Ranked EDEN™ Antigens

EVX-B2 Shows Unprecedented Broad Bacteria Killing

Bactericidal efficacy against a panel of 50 clinically relevant strains

EVX-B2 Antigen Shows **Stronger Protection** than Clinical Lead Antigen (NHBA)

EDEN™ Identifies **New Class of Antigens** with Potential **Broad Applicability**

EVX-B2 antibodies attack the weak spot of the bacteria!

 \rightarrow

Targeting bacteria during cell division

EDEN™ is **Behind Several** of Evaxion's Infectious Disease **Product Candidates**

*The data generated in the EVX-02 program actively informs the development of the second generation EVX-03 DNA vaccine

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Summary

- EDEN[™] AI-score correlates with protection identifying most protective antigens potentially enabling lower clinical risk
- EDEN™ outperforms reverse vaccinology for faster and cheaper vaccine discovery
- Our EVX-B2 vaccine is the solution against Gonorrhea
- EVX-B2 shows unprecedented broad bacteria killing
- EVX-B2 antigen shows stronger protection than clinical lead antigen (NHBA)
- EDEN[™] identifies new class of antigens with potential broad applicability

Q&A SESSION

Agenda SESSION 1 - Introduction

CET		EST	
14.00 - 14.10	/ 9.0	0 - 9.10	Welcome
14.10 - 14.20	/ 9.1	0 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9.2	0 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9.3	5 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9.5	5 - 10.15	BREAK
SESSION 2 - Ir	nfectio	ous Disease Vc	accines
15.15 - 15.35	/ 10.	15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10.	35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10.	55 - 11.15	BREAK
SESSION 3 - Pe	ersonc	alized Cancer '	Vaccines
16.15 - 16.35	/ 11.	15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 11.	35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 11.	55 - 12.15	BREAK
SESSION 4 - Pr	recisio	on Cancer Con	icepts
17.15 - 17.35	/ 12.	15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12.	35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00	/ 12.	55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13.	00 - 14.00	Reception with drinks and snacks

RAVEN™ Model for uncovering unique cross-protective T-cell antigens

RAVEN™ **Distills the Immunogenic Components** of a Pathogen down to an **Enhanced Subunit Vaccine**

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

T-Cell Epitopes Can **Boost** Subunit Vaccine **Efficacy** and **Response Time**

RAVEN™ Designed **T-Cell Hotspot Primer** Enables **One-Shot Antibody Titers**

T-Cell Epitopes Can Provide **Protection** Against Infectious Pathogens

RAVEN™ Designed T-Cell Hotspot Vaccine Provides Significant Protection Against Lethal Challenge

Verified **IFN-**γ **response** towards 88% (15/17) of the included hotspots

Vaccination with T-cell epitopes alone is sufficient for protection against lethal infection in K18-hACE2/BL6 mice

Survival after SARS-CoV-2 infection

RAVEN™ Enables **Multiple Strategies** for T-Cell Vaccine Integration

Stand-Alone T-Cell Vaccine

- Extremely fast to produce
- Can elicit broad but limited
 protection

T-Cell Primer Vaccine

- Extremely fast to produce
- Improves onset and quality of antibody eliciting vaccines

T-Cell Grafted Vaccine

- Simpler distribution and delivery
- Broadest possible antibody
 response

RAVEN™ Models the Crucial Components for a Cytotoxic and Helper T-Cell Response

Using EvaxMHC, RAVEN™ Can Find **Key Immunogenic Hotspots** in Days

RAVEN™ Includes Modules for Structural Modelling

Intelligent Grafting of T-Cell Epitopes Into B-Cell Antigens is under development

RAVEN identified T-cell epitopes can be grafted into B-cell antigens using AI autoencoders

RAVEN™ is **Behind Several** of Evaxion's Infectious Disease **Product Candidates**

1			Indication / Pathogen	Product Candidate	Stage of Development					
1	AI	Al Model			Target Discovery	Preclinical	Phase 1	Phase 2		
/	dSes les	EDEN™ B-cell targets	Undisclosed	EVX-B3		S MSD				
	Infectious Disec Prophylactic Vaccin	& RAVEN™	Undisclosed	Multiple candidates						
		T-cell targets	Cytomegalovirus	EVX-V1		EXPRESION BIOTECHNOLOGIES				
			Undisclosed	Multiple candidates						

Summary

- RAVEN is designed to find efficacious Tcell hotspots
- RAVEN can design protective T-cell vaccines using technology from our personalized rapid production
- RAVEN can choose T-cells to boost efficacy of B-cell vaccine candidates

Q&A SESSION

BREAK – Be-Back at 16.15 CET / 11.15 EST

Agenda SESSION 1 - Introduction

CET / EST	
14.00 - 14.10 / 9.00 - 9.10	Welcome
14.10 - 14.20 / 9.10 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35 / 9.20 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55 / 9.35 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15 / 9.55 - 10.15	BREAK
SESSION 2 - Infectious Disease Vo	accines
15.15 - 15.35 / 10.15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55 / 10.35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15 / 10.55 - 11.15	BREAK
SESSION 3 - Personalized Cancer	Vaccines
16.15 - 16.35 / 11.15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55 / 11.35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15 / 11.55 - 12.15	BREAK
SESSION 4 - Precision Cancer Cor	ncepts
17.15 - 17.35 / 12.15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55 / 12.35 - 12.55	Addressing difficult to treat cancers with AI-Immunology [™]
17.55 - 18.00 / 12.55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00 / 13.00 - 14.00	Reception with drinks and snacks

evaxion-biotech.com

SESSION 3 - Personalized cancer vaccines

Al-Immunology™ Powered Vaccines

PIONEER™ - Validated model for designing personalized Neoantigen vaccines

Despite the Advent of Cancer Immunotherapy there is Still a **Need for Better Cancer Treatments**

- Cancer immunotherapy based on checkpoint inhibitors (CPI) has revolutionized the treatment of previously untreatable cancers such as melanoma
- Only 20-30% of cancer patients respond to CPI treatment, highlighting the need for improved treatment options

Neoantigen-Based Cancer Vaccines are the **Next Evolution of Cancer Immunotherapies**

Neoantigens are ideal cancer vaccine targets that:

- arise from cancer-specific DNA mutations
- are found specifically in tumors and absent from normal tissues
- elicit potent, highly specific immune responses
- synergize with current cancer immunotherapies

Cancer Patients Have **Distinct Neoantigens Hindering** the Development of a **Universal Neoantigen Vaccine**

Future Cancer Treatments Will Be **Tailored** More Specifically to **Each Patient**

How We Built **PIONEER™**

PIONEER™

SNVs	Frameshifts	Gene fusions	HLA loss
Clonality	Expression	Neoantigens	
EvaxMHC	HLA typing	Distance to self	
Antigen quality	Antigen safety	Personalized design	

1 DISEASE DECODING

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Clonality	Expression
Bacterial antigens	Viral antigens	Antigen conservation	Treatment effect
Neoantigens			

2 IMMUNE RESPONSE DECODING

EvaxMHC	HLA typing	HLA frequencies	Distance to self
Protective antigens	Epitope hotspots		

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precision design	Personalized design	BIFROST	Neoantigens

PIONEER™ Models the Mechanisms Inside Cancer Cells that Generate Effective Neoantigens for Cancer Vaccines

PIONEER™ is Part of a Larger **Process from Patient Tumor to Treatment**

PIONEER™ is **Behind Several** of Evaxion's Oncology **Product Candidates**

*The data generated in the EVX-02 program actively informs the development of the second generation EVX-03 DNA vaccine

EVX-01 - Personalized Neoantigen Vaccine in Metastatic Melanoma

Phase 1 clinical trial (NCT03715985)

Stage IV Metastatic melanoma (N=12)

Primary endpoint: Safety and tolerability

Selected secondary endpoint:

- Immune response induced by **EVX-01**

CAF09b liposomal adjuvant

		Production			EV)	(-01					
			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\rightarrow			
	W1		W8	W10	W12	W14	W16	W18			
Anti-PD1						Dosi	ng ac Iat	cording to			 \rightarrow

EVX-01 - Strong Phase 1 Clinical Data

- Trial met the primary endpoint
- Neoantigen-specific immune
 response in all patients
- Clinical response in 8 out of 12 patients with 2 complete responders

Individual patient responses

PIONEER™ Scores Predict Immunogenicity & Clinical Response

Neoantigens with higher PIONEER™ scores are more likely to be immunogenic

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

PIONEER™ scores are predictive of

clinical response

EVAX[106

Superior Neoantigen Quality Leads to Prolonged Progression-Free Survival Independent of TMB

EvaxMHC is Required for **Optimal Prediction** of Immunogenic Neoantigens

Garde et al. (2019). Immunogenetics 71, 445–454. <u>10.1007/s00251-019-01122-z</u> Gfeller et al. (2023). Cell Syst *14*, 72-83.e5. <u>10.1016/j.cels.2022.12.002</u> Racle et al. (2023). Immunity *56*, 1359–1375.e13. <u>10.1016/j.immuni.2023.03.009</u>
EvaxMHC is Required for **Optimal Prediction** of Immunogenic Neoantigens

Neoantigen Immunogenicity 0.80 0.75 Average Precision 0.70 0.65 0.60 0.55 0.50 EvaxMHC Gold standard **MixMHCpred**

Summary

- The PIONEER™ model selects relevant neoantigens for personalized cancer vaccines
- PIONEER[™] has been tested in two Phase 1 clinical trials and is being tested in an ongoing Phase 2 trial
- PIONEER[™] scores are predictive of neoantigen immunogenicity and clinical response to the neoantigen treatment
- EvaxMHC is critical for optimal PIONEER™ performance

Q&A SESSION

Agenda SESSION 1 - Introduction

CET	/ EST	
14.00 - 14.10	/ 9.00 - 9.10	Welcome
14.10 - 14.20	/ 9.10 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35	/ 9.20 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55	/ 9.35 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15	/ 9.55 - 10.15	BREAK
SESSION 2 - In	fectious Disease Vo	accines
15.15 - 15.35	/ 10.15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55	/ 10.35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15	/ 10.55 - 11.15	BREAK
SESSION 3 - Pe	ersonalized Cancer	Vaccines
16.15 - 16.35	/ 11.15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55	/ 11.35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15	/ 11.55 - 12.15	BREAK
SESSION 4 - Pr	ecision Cancer Con	cepts
17.15 - 17.35	/ 12.15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55	/ 12.35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00	/ 12.55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00	/ 13.00 - 14.00	Reception with drinks and snacks

ObsERV™ – Leading model for designing personalized ERV-antigen vaccines

Some Cancer Patients Have Few Quality Neoantigens Underscoring the **Need for Additional Antigen Source**

Endogenous Retroviruses (ERVs) May be Promising Antigens for Cancer Therapies

- Ancient viruses that have integrated into the genome and are passed down through generations.
- Constitute up to 8% of the human genome
- Epigenetically suppressed in healthy tissue, but expressed in cancers
- Examples of ERVs are found to elicit specific T-cell responses and confer tumor protection in mice
- ERV specific T-cell responses have been measured in cancer patients
- In vitro killing of human tumor cell lines by ERV-specific T-cells

Atterman et al. (2018), Annals of Oncology 29: 2183–2191,

ERVs May Facilitate Personalized Cancer Vaccine Development for Patients with Few Neoantigens

- Pan solid cancer investigation of neoantigens and ERV antigens
- The number of neoantigens and ERV antigens is not correlated
- Patients with few neoantigens could leverage ERVs as alternative source of antigens for vaccine design
- May enable personalized cancer vaccines to a new segment of cancer patients

Patient Stratification with the ERV Antigen Burden Supports Their **Potential as Effective Cancer Antigens**

- CPI treated malignant
 melanoma patients
- Genomic analysis of baseline tumor biopsies for neoantigens and ERV antigens
- Low-TMB patients are stratified by ERV antigen burden
- ERVs may facilitate clinical response to CPI for patients with few neoantigens

ERVs Are Presented as **MHC Ligands** on Tumors and Can be Predicted by **EvaxMHC**

Tumor Cell Line

Pak et al. (2021), Mol Cell Proteomics

Leveraging our Modular **AI-Immunology™** Platform to Build **ObsERV™**

ObsERV™

HLA loss	Expression	ERV antigens
EvaxMHC	HLA typing	
Antigen quality	Antigen safety	Personalized design

1 DISEASE DECODING

2 IMMUNE RESPONSE DECODING

EvaxMHC	HLA typing	HLA frequencies	Distance to self
Protective antigens	Epitope hotspots		

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precison design	Personalized design	BIFROST	

ObsERVTM: A New Al-model for **Development of Personalized Cancer Vaccines** Based on ERV Antigens

- Fits into established clinical workflows
- Requires standard RNA-seq of tumor biopsy and patient's HLAtype
- Designed to identify potent ERV antigens that activate CD4⁺ and CD8⁺ T cells
- Aiming to provide sustained effective T-cell responses and clinical response

ObsERV™ Designs Efficacious ERV-Based Cancer Vaccines

EvaxMHC Empowers **ObsERV™** to Design **Efficacious** ERV-Based Cancer **Vaccines**

EVX-03 Will Evaluate **Personalized** Cancer Vaccines Leveraging **Neoantigens** and **ERVs**

Pipeline: Demonstrating the Performance and Scalability of Our Al-Immunology™ Platform

- ERVs constitute a complementary source of cancer antigens
- ObsERV[™] enables development of ERV based personalized cancer vaccines
- Preclinical proof-of-concept
- IND ready for clinical testing (EVX-03)

Garde, C. et al. (2023). Endogenous viral elements constitute a complementary source of antigens for personalized cancer immunotherapy. bioRxiv. <u>https://doi.org/10.1101/2023.03.23.533908</u>

Q&A SESSION

BREAK – Be Back at 17.15 CET / 12.15 EST

Agenda SESSION 1 - Introduction

CET / EST	
14.00 - 14.10 / 9.00 - 9.10	Welcome
14.10 - 14.20 / 9.10 - 9.20	Evaxion overview - Setting the scene
14.20 - 14.35 / 9.20 - 9.35	AI-Immunology™ - A leading AI platform
14.35 - 14.55 / 9.35 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55 - 15.15 / 9.55 - 10.15	BREAK
SESSION 2 - Infectious Disease Vo	accines
15.15 - 15.35 / 10.15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35 - 15.55 / 10.35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55 - 16.15 / 10.55 - 11.15	BREAK
SESSION 3 - Personalized Cancer	Vaccines
16.15 - 16.35 / 11.15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35 - 16.55 / 11.35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55 - 17.15 / 11.55 - 12.15	BREAK
SESSION 4 - Precision Cancer Con	cepts
17.15 - 17.35 / 12.15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35 - 17.55 / 12.35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55 - 18.00 / 12.55 - 13.00	THANK YOU and concluding remarks
18.00 - 19.00 / 13.00 - 14.00	Reception with drinks and snacks

evaxion-biotech.com

SESSION 4 – Precision cancer concepts

Al-Immunology™ Powered Vaccine

AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy

Checkpoint Inhibitors Are Widely Used as First Line Therapy

- Cancers exploit immune checkpoints
 to impair the immune system
- Checkpoint inhibitors remove the impairment and reinvigorate the immune system
- Improved treatment of several solid cancers
- Approved for an increasing number of cancer types

The **Market** for Checkpoint Inhibitor Therapy Is Projected to Reach almost **\$150 BN by 2030**

A Large Fraction of Cancer Patients Do Not Benefit from Checkpoint Inhibitor Therapy

- Demand for continued development of immunotherapies
- Demand for Identifying non-responders
- Some patients get severe side effect
- No established highly predictive biomarkers

PIONEER™ Derived **Biomarker** Predicts Clinical Response to the EVX-01 & anti-PD1 Combination Immunotherapy

ObsERV[™] Derived **Biomarker** Stratifies Low-TMB Cancer Patients Treated with Checkpoint Inhibitor

Garde, C. et al. (2023). Endogenous viral elements constitute a complementary source of antigens for personalized concer immunotherapy. bioRxiv. https://doi.org/10.1101/2023.03.23.533908

Predict Non-Responding Cancer Patients with **High Precision**

Benefits for patients and society

- Redirection to better suited treatments
- Avoid side effects from CPI treatment
- Health care budget

Genomic biomarkers

- Driver mutations
- Tumor microenvironment signatures
- Immune evasion signatures
- Antigen burdens, MSI and structural variants
- ObsERV™ and PIONEER™

Leveraging our Modular **AI-Immunology™** Platform to Build **AI-DEEP™**

AI-DEEP™

SNVs	Frameshifts	Gene fusions	HLA loss
ERV antigens	TME impact	Expression	Clonality
Treatment effect			
EvaxMHC	HLA typing	Distance to self	

1 DISEASE DECODING

2 IMMUNE RESPONSE DECODING

EvaxMHC	HLA typing	HLA frequencies	Distance to self
Protective antigens	Epitope hotspots		

3 VACCINE DESIGN

Antigen quality	Antigen safety	B-cell antigen modelling	B-cell antigen design
Precison design	Personalized design	BIFROST	

Pre-Therapy Biopsies Data from 937 CPI Treated Cancer Patients Were Collected for Model Development

AI-DEEP™ **Predicts 28% of Non-Responders** to Checkpoint Inhibitor Therapy with **High Precision**

- Gold standard biomarkers (TMB and PDL1) fail to identify non-responding patients with high precision
- AI-DEEP™ predicts 28% of non-responding patients with high precision
- AI-DEEP[™] could guide treatment decisions to improve patient care and health care budgets

ObsERV™ & PIONEER™ Derived **Biomarkers** Are **Important** for Prediction of Non-Responding Patients

- Feature ablation study ranks biomarkers according to their importance for the predictive performance
- In-house models ranked among the most informative biomarkers out of an initial set of >2000 biomarkers
- Gold standard biomarkers (TMB and PDL1)
 are ranked as less important

Summary

- AI-DEEP™ leverages PIONEER™ and ObsERV™ to predict clinical response to checkpoint inhibitor therapy
- AI-DEEP[™] can accurately identify a subset of non-responding cancer patients and may inform treatment decisions
- We are currently exploring options for a commercial offering and further clinical validation as a companion diagnostic

Q&A SESSION

Agenda SESSION 1 - Introduction

	CET		EST		
14.00	- 14.10	/ 9.	00 - 9	.10	Welcome
14.10	- 14.20	/ 9.	10 - 9	.20	Evaxion overview - Setting the scene
14.20	- 14.35	/ 9.	20 - 9	.35	AI-Immunology™ - A leading AI platform
14.35	- 14.55	/ 9.	35 - 9	.55	EvaxMHC 4.0 - A cutting-edge AI building block
14.55	- 15.15	/ 9.	55 - 1	0.15	BREAK
SESSI	ION 2 - In	nfecti	ious Di	sease Va	ccines
15.15	- 15.35	/ 10	.15 -	10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens
15.35	- 15.55	/ 10	.35 -	10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens
15.55	- 16.15	/ 10	.55 -	11.15	BREAK
SESSI	SESSION 3 - Personalized Cancer Vaccines				/accines
16.15	- 16.35		.15 -	11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines
16.35	- 16.55		.35 -	11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines
16.55	- 17.15		.55 -	12.15	BREAK
SESSI	ON 4 - Pr	recisi	ion Ca	ncer Con	cepts
17.15	- 17.35	/ 12	.15 -	12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy
17.35	- 17.55	/ 12	.35 -	12.55	Addressing difficult to treat cancers with AI-Immunology™
17.55	- 18.00	/ 12	.55 -	13.00	THANK YOU and concluding remarks
18.00	- 19.00	/ 13	.00 -	14.00	Reception with drinks and snacks

Addressing difficult to treat cancers with AI-Immunology™
Some Cancers Have **Few Targets** for Modern Cancer Vaccines

Alexandrov et al (2013) Nature 50, p415–421 Hilf et al (2018) Nature 565 p240–245

Endogenous Retroviruses (ERVs) May be Promising Antigens for Cancer Therapies

- Ancient viruses that have integrated into the genome and are passed down through generations.
- Constitute up to 8% of the human genome
- Epigenetically suppressed in healthy tissue, but expressed in cancers
- Examples of ERVs are found to elicit specific T-cell responses and confer tumor protection in mice
- ERV specific T-cell responses have been measured in cancer patients
- In vitro killing of human tumor cell lines by ERV-specific T cells

Atterman et al. (2018), Annals of Oncology 29: 2183–2191,

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

Inclusion of ERV Targets Allows Design of **Personalized Cancer Vaccine in Difficult to Treat Cancers**

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

ERVs Conservation Allows for the **Design of Shared Vaccines**

ObsERV[™]2.0

HLA loss	Expression	ERV antigens	
EvaxMHC	HLA typing	HLA frequencies	Epitope hotspots
Antigen quality	Antigen safety	Personalized design	Precision design

RAVEN™

ERVs Conservation Allows for the **Design of Shared Vaccines**

AML ERV Targets are Different Depending on Age

Precision-Based Vaccines Potentially Improves Effect in Childhood AML

ObsERV[™] 2.0

© Evaxion Biotech A/S. All rights reserved worldwide. Copenhagen, Denmark, 2024.

1.0 -

0.8

Likelihood 0.6

0.2

0.0 -

2

Pipeline: Demonstrating the Performance and Scalability of Our Al-Immunology™ Platform

Summary

- Targeting ERVs allows Evaxion to design vaccines for cancers that are difficult to treat with current vaccine approaches
- With development of ObsERV[™] 2.0, using building blocks from RAVEN[™], shared vaccines can be designed for multiple different cancer types
- Shared vaccines have a low manufacturing cost and no lag time from diagnose to treatment
- ObsERV[™] 2.0 also allows for the design of precision vaccines based on ERV expression and patient HLA profiles
- Precision vaccines allow for cost effective vaccines in cancer types where shared vaccines cannot be designed

Q&A SESSION

Agenda SESSION 1 - Introduction

CET		EST		
14.00 - 14.10) / 9	9.00 - 9.10	Welcome	
14.10 - 14.20) / 9	9.10 - 9.20	Evaxion overview - Setting the scene	
14.20 - 14.35	5 / 9	0.20 - 9.35	AI-Immunology™ - A leading AI platform	
14.35 - 14.55	5 / 9	0.35 - 9.55	EvaxMHC 4.0 - A cutting-edge AI building block	
14.55 - 15.15	5 / 9	0.55 - 10.15	BREAK	
SESSION 2 - Infectious Disease Vaccines				
15.15 - 15.35	5 / 1	.0.15 - 10.35	EDEN™ - Best-in-class model assessing protectiveness of B-cell antigens	
15.35 - 15.55	5 / 1	0.35 - 10.55	RAVEN™ - Model for uncovering unique cross-protective T-cell antigens	
15.55 - 16.15	5 / 1	0.55 - 11.15	BREAK	
SESSION 3 - Personalized Cancer Vaccines				
16.15 - 16.35	5 / 1	1.15 - 11.35	PIONEER™ - Validated model for designing personalized Neoantigen vaccines	
16.35 - 16.55	5 / 1	.1.35 - 11.55	ObsERV™ - Leading model for designing personalized ERV-antigen vaccines	
16.55 - 17.15	5 / 1	1.55 - 12.15	BREAK	
SESSION 4 - Precision Cancer Concepts				
17.15 - 17.35	5 / 1	2.15 - 12.35	AI-DEEP™ - Model for predicting responses to cancer CPI immunotherapy	
17.35 - 17.55	5 / 1	2.35 - 12.55	Addressing difficult to treat cancers with AI-Immunology™	
17.55 - 18.00) / 1	2.55 - 13.00	THANK YOU and concluding remarks	
18.00 - 19.00) / 1	.3.00 - 14.00	Reception with drinks and snacks	

Concluding Remarks - AI-Immunology™

- Holds the promise for a new era in vaccine discovery, design and development
- Uses advanced AI and machine learning technologies
- Outcompetes standard vaccine target
 discovery approaches
- Identified targets hold the promise for addressing serious unmet needs
- A unique modular architecture creates a scalable and adaptable platform
- Is validated by already established partnerships

LinkedIn: Evaxion Biotech A/S

Thank you! Please stick around for snacks & drinks

Al-Immunology™ Powered Vaccines

